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Abstract

A linear elastic convolution filter was derived from the eigenfunctions of the Navier–Stokes differential operator by Bro-Nielsen in
order to match images with large deformations. Due to the complexity of constructing the elastic convolution filter, the algorithm’s effi-
ciency reduces rapidly with the increase in the image’s size. In our previous work, a simple two-sided exponential filter with high efficiency
was proposed to approximate an elastic filter. However, its poor smoothness may degenerate the performance. In this paper, a new expo-
nential filter was constructed by utilizing a modified nonlinear curve fitting method to approximate the elastic filter. The new filter’s good
smoothness makes its performance comparable to an elastic filter. Its simple and separable form makes the algorithm’s speed faster than
the elastic filter. Furthermore, our experiments demonstrated that the new filter was suitable for both the elastic and fluid models.
� 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.
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1. Introduction

Image registration in neuroimaging studies, which aims
at matching an image onto another with optimal spatial
transformation, has a variety of applications. In a medical
imaging study, for example, functional or structural
changes in images of an individual subject over time need
to be examined, or images of a patient group and a normal
control group need to be compared. Because of the inter-
subject neuroanatomy variation, it is necessary to perform
image registration before these statistical comparisons. The
registration algorithms can be categorized as linear or non-
linear. The simple linear registration, such as rigid or affine
transformation, only removes global differences in brain
shape and size. In contrast, nonlinear registration

eliminates local differences of the two images. In many
cases, both algorithms are used, linear alignment prior to
nonlinear registration.

Nonlinear registration usually transforms images in
higher-dimensional anatomical mapping in order to match
local variability across different anatomies [1,2]. Nonlinear
registration approaches can be divided into intensity-based
and model-based types [3]. The intensity-driven algorithm
matches the regional intensity of each image based on
mathematical or statistical criteria [4], whereas the model-
driven algorithm needs to build geometric models including
functionally important surfaces, curves and point marks
[5]. For the intensity-driven algorithm, automated image
registration [6] and statistical parametric mapping algo-
rithms [7] can measure anatomical differences efficiently
by using global basis functions to approximate deforma-
tion fields in lower-dimensional anatomical mappings.
The transformation’s degree of freedom is generally not
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beyond the order of basis functions. Due to lower-dimen-
sional mapping, the limited basis functions fail to approx-
imate the deformation totally. However, in higher-
dimensional anatomical mappings, physical continuum
models allow extremely flexible deformations, and the
degrees of freedom can be as many as the number of voxels
in the images.

Various numerical algorithms and mathematical models
in the field of physics have been adopted to the nonlinearly
register image of one subject to that of another [8–11]. Rel-
evant to our current efforts, a brief review of the two
approaches based on the elastic solid model and the viscous
fluid model, respectively, is in demand and provided here.
Physical continuum models were introduced for use in non-
linear registration because they allow for extremely flexible
deformations and their degrees of freedom can be as many
as the number of voxels in images [3]. Bajcsy and Kovacic
et al. [12], based on the physical continuum model, were the
first to construct the deforming image as a 3D elastic solid
and to derive the body force from the gradient of the inten-
sity correlation. Continuing their efforts and recognizing
the limitation of small deformation assumptions for the lin-
ear elastic model, Christensen [13,14] proposed a viscous
fluid model to estimate large image deformations for main-
taining the continuity of structures. This model overcomes
two pitfalls of the elastic model: linear elastic penalties and
small deformation approximations. Therefore, the fluid
model can perform large-magnitude displacement. How-
ever, because the viscous fluid partial differential equation
(PDE) has to be solved on a discrete lattice, the speed of
the algorithm is too slow to be implemented on the PC [15].

Based on the work of Christensen [13], Bro-Nielsen and
Gramkow [15] derived a convolution filter for linear elas-
ticity from the eigenfunctions of the Navier–Stokes differ-
ential operator L ¼ lr2 þ ðkþ lÞrðrT Þ. This filter
increased the algorithm speed in the fluid model by several
orders of magnitude. Unfortunately, the computation time
for constructing the filter and performing the convolution
operation increased exponentially with the size of the
image. Therefore, it is desirable to derive alternative com-
putationally efficient filters. In fact, Bro-Nielsen and Gram-
kow [15] demonstrated that the ‘demon’-based registration
method [9,16] is actually equivalent to the use of a Gauss-
ian filter as an approximation of the elastic filter. The
increased computing efficiency associated with the Gauss-
ian filter is due to the fact that a 2D or 3D Gaussian filter
is the product of two or three one-dimensional Gaussian
filters, which can be referred to as separatability. Due to
the notable differences between the Gaussian and elastic fil-
ters, however, one should not expect the same or similar
performance with the use of these two filters [15,17].

Balancing the increased efficiency and better perfor-
mance than the Gaussian filter, we previously proposed a
simple two-sided exponential filter and demonstrated,
indeed, that its performance is superior to the Gaussian fil-
ter and its computational efficiency is higher than both the
elastic filter and the Gaussian filter [18]. Nevertheless, there

are some limitations to the two-sided exponential filter. For
example, its smoothness is poor. Consequently, it may not
be as robust as an elastic filter. Continuing our efforts, the
current study proposes (i) to use a new curve fitting method
to produce a new exponential filter that has much higher
computational efficiency than an elastic filter, but has
almost the same performance and robustness as an elastic
filter; (ii) to generalize its use from vicious fluid model to
also elastic model. This generalization is possible as the
two models can be unified under the framework of the
Navier–Stokes equilibrium equations. Excellent matching
results are obtained by using the new exponential filter in
both models.

2. The unification of elastic and fluid models

2.1. Image registration based on elastic and fluid models

The general theory will be illustrated for the 2D case,
but it is applicable to 3D as well. We assume that the
two images, an object image (O) and a template image
(T), are to be registered. This registration is via an opti-
mized smooth deformation field u(x, t) mapping the coordi-
nate space of O to that of T.

2.1.1. The elastic model

In elastic media, the 2D displacement field u(x, t) result-
ing from internal deformation forces F(x, t), which is called
body force, obeys the Navier–Stokes equilibrium equation
for linear elasticity [1]:

lr2uðx; tÞ þ ðkþ lÞrðrT � uðx; tÞÞ þ Fðx; tÞ ¼ 0

8x 2 R2 ð1Þ

where rT � uðx; tÞ ¼
P
@uj=@xj;r2 ¼ rTr is the Laplacian

operation, and Lamé’s coefficients, k and l, refer to the
elastic properties of the medium. Eq. (1) describes the dis-
placement of a particle at location x when time is t assum-
ing that the particle is of extremely small size. Moreover, in
the study of medical image registration, body force is de-
rived from the gradient of a cost function, such as intensity
correlation.

In order to use this model, the displacement of each par-
ticle is assumed to be small. So the model is more suitable
for image registration with small deformation on a region-
by-region basis (not global position difference).

2.1.2. The fluid model

Christensen [13] introduced the fluid model to describe
large distance deformations. Under the external body force
F(x, u (x, t)), the particles of the fluid move with the instan-
taneous velocity v(x, t) determined by the deformation field
u(x, t). The body force and velocity also satisfy the Navier–
Stokes equilibrium equation.

lr2mðx; tÞ þ ðkþ lÞrðrT � mðx; tÞÞ þ Fðx; uðx; tÞÞ ¼ 0 ð2Þ
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Comparing Eq. (1) with Eq. (2), it is obvious that the
two models obey the same Navier–Stokes equilibrium
equation noting the major difference between them is that
u(x) in Eq. (1) is replaced with v(x, t) in Eq. (2).

2.2. Convolution filter in the solution of the Navier–Stokes

equation

Regardless of the models, PDE must be solved in order
to obtain the deformation field. It is a computationally
expensive process if the algorithm of Christensen is used.
Bro-Nielsen proposed the convolution filter approach to
solve the linear PDE [15]. Comparing Eq. (1) with Eq.
(2), the common Navier–Stokes differential operator L is

L ¼ lr2 þ ðkþ lÞrðrT Þ: ð3Þ
Under the linear operator L, the elastic and fluid models
are expressed as

Luðx; tÞ þ Fðx; tÞ ¼ 0 Lmðx; tÞ þ Fðx; uðx; tÞÞ ¼ 0 ð4Þ
Eq. (4) suggests that the two models can be described using
a uniform system with an external body force as the input
F. The output is u(x) for the elastic model and v(x, t) for the
fluid model, respectively (Fig. 1(a)).

As shown in Fig. 1(a), with the availability of the convo-
lution filter, H, the solution of Eq. (1) or Eq. (3) is simply F
convolved with H. Based on the eigenfunctions of the lin-
ear operator L, Bro-Nielsen derived the filter H as an
approximation to the impulse response of an applied unit
force in the middle of the square with a unit area (defined
as [01] � [01]). To make it applicable to images with a
finite number of voxels, the filter is discretized. Assume that
the image size is D � D, and let the lattice be addressed by
x=[x1,x2]T, where xr 2 ½� D�1

2
; D�1

2
�; r ¼ 1; 2:

The filter implementing the 2D linear elastic operator L

for the unit force in the x1 direction applied in xc is then [15]

H1ðxÞ¼
4

p2lð2lþkÞ
XD�1

i;j¼0

pðxcÞ
ði2þ j2Þ2Cij

�ði2lþð2lþkÞj2ÞpðxÞ
ðlþkÞijqðxÞ

� �

ð5Þ
pðxÞ ¼ sinðipx1Þ cosðjpx2Þ qðxÞ ¼ cosðipx1Þ sinðjpx2Þ ð6Þ

Cij ¼
1 if none of i; j are zeros

2 for one of i; j is zeros

�
ð7Þ

Apparently, the computational cost increases dramati-
cally as a function of the image size. The linear elastic filter
for the 3D case is very complex. And the detailed deriva-
tion of the 3D filter can be referred to [19].

Note that, H2(x), the filter with unit force applied to the
x2 direction can be obtained from H1(x) by switching x1

and x2 positions. Then the filter with a unit force of (fx, fy)
is obtained as fx � H1(x) + fy � H2(x), where � is the con-
volution operation.

2.3. Properties of the linear elastic filter

With the linearity and symmetry of H1 and H2, we only
need to discuss H1 here. Appropriate values of viscosity
coefficients k and l depend upon the particular imaging
modality. Here we take k = 11.5 and l = 1. As H1(x) is a
vector field, it has one component, H x1

1 ðxÞ along the x1

direction and another component H x2
1 ðxÞ along the x2

direction (Fig. 1(b)). Because H1(x) is associated with a
unit force acting in the x1 direction, H x1

1 ðxÞ has a much lar-
ger magnitude than H x2

1 ðxÞ that is often ignored for simplic-
ity. A scalar field H x1

1 ðxÞ symmetrical along the x1 and x2

directions is depicted in Fig. 1(c).
Because a unit force acts in the center of the image, the

displacement of the center is much larger than that of the
peripheral areas. For the image size 128 � 128, the middle
column curve H x1

1 ð0:5; x2Þ with x1 = 0.5 can be extracted
from H x1

1 ðxÞ. The same is for the middle row curve
Hx1

1 ðx1; 0:5Þ when x2 = 0.5. These two curves almost domi-
nate the whole scalar field (Fig. 2(a)). Curves of similar
shapes, but with reduced magnitudes, are observed moving
toward the edges of images from its center.

3. New exponential filter

3.1. Curve fitting method

Obviously, it is computationally expensive to construct a
linear elastic filter based on Eq. (9), especially for the
images with a high number of voxels. Motivated by the
exponential-like shapes of the curves as shown in
Fig. 2(a) simpler exponential filters could be utilized to
approximate the complex elastic filter with an additional
assumption that the convolution filter can be expressed as

Fig. 1. (a) The uniform system model. H is the system function referred to as the linear convolution filter; (b) displacement vector field H1(x) with size
15 � 15; (c) the scalar field Hx1

1 ðxÞ of H1(x) shown in 3D space with size 128 � 128.
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a production of a function of x1 and a function of x2 (i.e.,
the filter is x1–x2 separable).

Let R1(x1) represent the row curve with D data points
(xi1,xi2), we wish to find a function of x1 and parameter
p that gives the ‘‘best fit” to the data by the function
F(x1,p). Here F(x1,p) is assumed to have an exponential
form.

F ðx1; pÞ ¼ egðx1;pÞ gðx1; pÞ ¼ p1x2
1 þ p2jx1j þ p3 ð8Þ

The exponent g(x1,p) is a quadratic polynomial. The data-
fitting can be transformed into the linear relation by taking
the logarithm on both sides of Eq. (8).

ln F ðx1; pÞ ¼ gðx1; pÞ ð9Þ

In order to assure that F(x1,p) is larger than zero, R1(x1) is
first normalized by making the maximum equal to 1 and
then a constant is added to it.

R01ðx1Þ ¼
R1ðx1Þ

maxðR1ðx1ÞÞ
þ C R01ðx1Þ > 0 ð10Þ

The nonlinear data-fitting method is to find the function
g(x1,p) that best fits the transformed data points ln R01ðx1Þ
in the least squares sense.

min
x1

XD

i¼1

ðln R01ðx1iÞ � gðx1i; pÞÞ ð11Þ

If we define a matrix A with A ¼ ½x2
1 j x1 j 1� and vector b

with components bi ¼ ln R01ðx1iÞ, then the data-fitting prob-
lem takes the form

Ap ffi b ð12Þ

The least squares estimate of Eq. (12) is
~p ¼ ðAT AÞ�1

AT b. The normalized data can be expressed as

~R01ðx1Þ ¼ R01ðx1Þ � C ¼ egðx1~pÞ � C ¼ e~p1x2
1
þ~p2x1þ~p3 � C ð13Þ

Using the same method described above, the column curve
can also be fitted.

~R01ðx2Þ ¼ R01ðx2Þ � C0 ¼ egðx2;~p0Þ � C0

¼ e~p4x2
2
þ~p5x2þ~p6 � C0 ð14Þ

The new 2D filter for the x1 direction can be derived by
combining Eq. (13) with Eq. (14).

Hx1
1 ðx1; x2Þ ffi k~R01ðx1Þ~R01ðx2Þ 0 < k 6 1 ð15Þ

k ¼ maxðHx1
1 ðx1; x2ÞÞ

maxð~R01ðx1ÞÞmaxð~R01ðx2ÞÞ
ð16Þ

The impulse response for the x2 direction is determined
by the simple rotation of that for the x1 direction.

Fig. 2. (a) Two curves of Hx1
1 ð0:5;x2Þ (solid line) and H x1

1 ðx1; 0:5Þ (dotted line); (b) a new 2D exponential filter H x1
1 ðx1; x2Þ in a 3D space; (c) the original

curve (dotted line) and the fitted curve (solid lines) of the normalized curve of H x1
1 ð0:5; x2Þ; (d) the original curve (dotted line) and the fitted curve (solid

lines) of the normalized curve of Hx1
1 ðx1; 0:5Þ.
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H x2
2 ðx1; x2Þ ffi k~R02ðx1Þ~R02ðx2Þ 0 < k 6 1 ð17Þ

~R02ðx1Þ ¼ e~p4x2
1
þ~p5x1þ~p6 � C0 ð18Þ

~R02ðx2Þ ¼ e~p1x2
2
þ~p2x2þ~p3 � C ð19Þ

Here, the subscripts 1 and 2 of H(x1,x2) denote that the
center unit force comes from the x1 and x2 directions,
respectively. k is an amplitude coefficient.

3.2. The coefficients of a new exponential filter

Applying the method in Section 3.1 to the elastic filter
with 128 � 128 size, the new filter’s coefficients can be
derived. For R01ðx1Þ, the x1 coordinate is set to between 0
and 1. The coefficients are ~p ¼ ½0:0003�0:0404 0:0092�.
For R02ðx2Þ, the coefficients are ~p0 ¼ ½0:0005�0:0575
�0:0290�. Fig. 2(c) and (d) shows the fitted curves.

The new 2D exponential filter Hx1
1 ðx1; x2Þ is derived sim-

ply from Eq. (15), and is shown in Fig. 2(b). Here
k = 0.6538.

3.3. Variation of the parameters with the image size

To see how image size affects the values of the estimated
parameters, we plotted each of the six estimated parameter
values vs. the number of voxels varying from 32 to 200 with
an increment of 4 (see Fig. 3). Furthermore, we investi-
gated their relationship by constructing each of the six
parameters as a function of the image size using the least
square fit. The expressions of all functions are in the fol-
lowing. Here p1, p2 and p3 are the parameters of Eq. (13),
while p4, p5 and p6 correspond to those of Eq. (14).

p1ðx1Þ ¼
1

0:2145x2
1 þ 1:3856x1 þ 252:5768

p2ðx1Þ ¼
�1

0:1912x1 þ 0:4223
ð20Þ

p3ðx1Þ ¼
� lgð0:008x1 � 0:084Þ

3

p4ðx2Þ ¼
1

0:1378x2
2 � 2:7417x2 þ 73:0772

ð21Þ

p5ðx2Þ ¼
1

�0:1542x2 þ 2:1662

p6ðx2Þ ¼
� lgð0:0126x2 � 0:3871Þ

3
ð22Þ

Fig. 3 suggests that all functions of Eqs. (20)–(22)
describe the variation of parameters with image size very
well. To further validate the use of these fitted functions,
we compared the calculated parameter values based on
these functions and those directly estimated from the image
size of 256 � 256. The six parameters calculated from the
above functions were p1 = 6.8191e-005, p2 = �0.0203,
p3 = �0.0977, p4 = 1.1902e-004, p5 = �0.0268 and
p6 = �0.1510. The parameters estimated directly were
p1 = 0.0001, p2 = �0.0199, p3 = �0.1000, p4 = 0.0001,
p5 = �0.0260 and p6 = �0.1501. We found that they were
comparable.

3.4. Algorithms of elastic and fluid registration based on the

new filter

The complete elastic registration algorithm procedure
consists of the following steps:

Fig. 3. Plots of parameters vs. the number of voxels in each direction. The * markers represent original data points, and the solid lines are the curves of
fitted functions.
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(1) Produce a new filter H(x) including H x1
1 ðx1; x2Þ and

Hx2
2 ðx1; x2Þ using Eq. (15) and Eq. (17);

(2) Let t = 0 and u(x, t) = 0;
(3) Calculate the body force F(x, u(x, t)) using Eq. (5);
(4) If F(x, u(x, t)) is below a threshold for all x, then

stop;
(5) Convolve filter H(x) with F(x, u(x, t)) to obtain the

displacement field u(x, t);
(6) t = t + 1, go to 3.

The fluid registration algorithm is more complex than
the elastic registration because we must apply Euler inte-
gration over time using a forward finite difference estimate
of the time derivative in Eq. (4) in order to calculate the
displacement u(x, t):

uðx; t þ DÞ ¼ uðx; tÞ þ Dmðx; tÞ
X3

i¼1

miðx; tÞ@uðx;tÞ
=@xi ð23Þ

(1) Produce the H(x) including Hx1
1 ðx1; x2Þ and H x2

2 ðx1; x2Þ
using Eq. (15) and Eq. (17);

(2) let i = 0 and u(x, 0) = 0;
(3) calculate the body force F(x, u(x, ti)) using Eq. (5);
(4) if F(x, u(x, ti)) is below a threshold for all x, then stop;
(5) convolve filter H(x) with F(x, u(x, ti)) to get the

instantaneous velocity v(x, ti);
(6) calculate the perturbation of the displacement field.

RðxÞ ¼ mðx; tiÞ �
X3

i¼1

miðx; tiÞ@uðx;tiÞ=@xi ð24Þ

(7) choose a time step D max(||R(x)||) < dumax, where
dumax is the maximal flow allowed in one iteration
and D ¼ tiþ1 � ti;

(8) if the Jacobian J = |x � u(x, ti+1)| < 0.5, then regrid
the object image and let u(x, ti+1) = 0. Otherwise cal-
culate u(x, ti+1) using Eq. (23);

(9) let i = i + 1 and go to 3.

4. Experiment

Simulated imaging data and real MRI data were used
to demonstrate how the new filter accommodates both
the elastic and fluid models and how its performance
fared against the elastic filter. Two sets of simulated data
using the binary image with a size of 128 � 128 were
used in 2D elastic and fluid registration [13,15]. Real
MRI data were used to compare the performance
between elastic and fluid registration through two sorts
of filters.

Among these data, it was assumed that the object and
the template images were consistent on topology and that
each constituent structure had roughly the same gray-level
values.

4.1. 2D elastic image registration

The object image is a square and the template is a rect-
angle. The dimension of these images is 128 � 128 pixels.
The square is 34 � 34 and the rectangle is 34 � 58. In
[15], an elastic filter was used to match the square with
the rectangle based on the fluid model. Because the differ-
ence between the two images was not large, the elastic
model is also suitable for matching these two images. Both
the new filter and the elastic filter were applied to transform
the square. Results in Fig. 4(a) show that the performance
of the new filter is almost the same as the elastic filter, and
the new filter can maintain the topology of the deformed
image as well as the elastic filter. For the sake of the con-
vergence speed comparison, the mean square error between
the template image and the deformed object image was cal-
culated at each iteration. Fig. 4(b) shows that the iterative
convergence speed of the new filter is a little bit faster than
the elastic filter during the first 50 iterations.

4.2. 2D fluid image registration

The simulated data used here are similar to that of Chris-
tensen [13]. The template is a ‘‘C”-shaped image with
128 � 128 pixels, and the object is a wedge-shaped image.
The two images were first linearly aligned so that they over-
lapped. Then both the elastic and fluid models were used to
register the images. The result shows that the elastic model is
no longer suitable in the large deformation. On the other
hand, the new filter performed equally well on the vicious
fluid model (Fig. 5(a)). The convergence speed of the two fil-
ters based on the fluid model is almost the same (Fig. 5(b)).

4.3. 2D MRI data registration

We applied elastic and fluid models to real 2D MRI data
of the human brain by using both the new and the elastic
filters. Both object and template images were from one slice
of each two 3D MRI data. The 3D template image was a
single-subject T1 template in SPM software (http://www.
fil.ion.ucl.ac.uk/spm/) with 91 � 109 � 91 voxels at
2 � 2 � 2 mm3. The 3D object was a T1 image of a single
subject with 77 � 220 � 220 voxels at 2 � 1 � 1 mm3.
First, the 3D object image was resampled into the dimen-
sion of the template and aligned with the template in a
global shape by a simple linear affine transformation. The
axial slices 48 of both T1 images in transverse view were
selected. The range of intensity in the 2D object image
was preprocessed by histogram-matching it to the template
image. The final results are shown in Fig. 6(a).

Great differences can be found in the ventricles of the
object and template image. A mask of ventricle is con-
structed to compare the differences in ventricle area
between template and deformed image. For the elastic
model, the mean square error of the ventricle area was
0.0162 with the new filter and 0.0248 with the elastic filter.

764 Z. Long et al. / Progress in Natural Science 19 (2009) 759–767



Fig. 4. Results of the 2D elastic image registration. (a) The left column corresponds to the object (top) and template images (bottom). The middle column
shows the deformed object images (top) and rectangular grids (bottom) after the elastic transformation with the new filter. The right column shows the
deformed object images (top) and rectangular grids (bottom) with the elastic filter. (b) Mean squared error vs. iterative times (before 100 times). The solid
line represents the convergence curve of the new filter, and the dotted line represents that of the elastic filter.

Fig. 5. Results of the 2D fluid image registration. (a) The leftmost column shows the object (top) and template image (bottom). The left center column
shows the deformed object image (top) and a rectangular grid (bottom) after the elastic transformation with the new filter. The right center column shows
the deformed object image (top) and a rectangular grid (bottom) after a fluid transformation with the new filter. The rightmost column shows the
deformed object image (top) and a rectangular grid (bottom) after a fluid transformation with the elastic filter. (b) Mean squared error vs. iterative times
based on the fluid model. The solid line represents the convergence curve of the new filter, and the dotted line represents that of the elastic filter.

Fig. 6. Results of the 2D MRI data registration. (a) The first column shows the object (top) and template image (bottom). The second column shows the
deformed object images (top) and a rectangular grid (bottom) after the elastic transformation with the new filter. The third column shows the deformed
object images (top) and a rectangular grid (bottom) after the fluid transformation with the new filter. The fourth column shows the deformed object images
(top) and a rectangular grid (bottom) after the elastic transformation with the elastic filter. The fifth column shows the deformed object images (top) and a
rectangular grid (bottom) after the fluid transformation with the elastic filter. (b) Mean squared error vs. iterative times (before 100 times). The solid line
represents the convergence curve of the fluid transformation with the new filter, the dashed line represents that of the fluid transformation with the elastic
filter, the dotted line represents that of the elastic transformation with the new filter and the dash dotted line represents that of elastic transformation with
the elastic filter.
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For the fluid model, it was 0.0131 with the new filter and
0.0133 with the elastic filter. Thus, the results of the fluid
model with two filters are better than those of the elastic
model. Fig. 6(b) shows that the convergence speed of the
new filter is close to that of the elastic filter based on the
fluid model, while it is faster for the new filter than the elas-
tic filter based on the elastic model.

In order to evaluate the algorithm efficiency of the two
filters on elastic model further, 18 subjects’ 2D MRI data
were selected with the same method. No significant differ-
ence existed in the initial mean square errors between each
subject’s 2D image and template. All these 2D MRI data
were registered to the same template image. The termina-
tive threshold of mean squared error was set to 0.005.
The total time for the whole iterations was recorded for
each subject. As the same fast convolution algorithm pro-
vided by Matlab was used, the two filters would take
almost the same time in each iterative step. Consequently,
both the total time and steps taken in the whole iterations
can be used to indicate the speed of convergence. Table 1
lists the mean and standard deviation (SD) of time and step
for the two filters. Results in Table 1 provide an additional
support for the faster convergence speed of the new filter
than the elastic filter in the elastic model.

5. Discussion

5.1. Separation of the new exponential filter

One main advantage of the new filter is that it is separa-
ble along any direction. The property makes the convolu-
tion operation much easier and reduces the time cost
greatly in images with a large size. In general discrete 2D
convolution F = H * G,

F ðx1; x2Þ ¼
X

m

X
n

Hðm; nÞGðx1 � m; x2 � nÞ ð25Þ

If H(m,n) is separable in x1 and x2 directions, it can be ex-
pressed as

Hðm; nÞ ¼ HðmÞ � HðnÞ ð26Þ

Now replacing H(m,n) in Eq. (25) with Eq. (26), Eq. (25)
becomes

F ðx1; x2Þ ¼
X

m

X
n

HðmÞHðnÞGðx1 � m; x2 � nÞ

¼
X

m

HðmÞ
X

n

HðnÞGðx1 � m; x2 � nÞ ð27Þ

Uðx1 � mÞ ¼
X

n

HðnÞGðx1 � m; x2 � nÞ ð28Þ

Eq. (28) is equal to a one-dimensional convolution in the x2

direction. The initial 2D convolution now becomes

F ðx1; x2Þ ¼
X

m

HðmÞUðx1 � mÞ ð29Þ

Therefore, if H(m,n) is separable in two directions, the tra-
ditional 2D convolution can be converted into 1D convolu-
tion along x1 and x2 directions in turn. It is obvious that
such separability can simplify the convolution operation
and reduce the computation greatly.

5.2. Comparison of the new exponential filter with the two-

sided exponential filter

In our previous work [18], we proposed a simple two-
sided exponential filter Eq. (30) to register images with high
efficiency.

H 1ðx1; x2Þ ¼ ke�a1jx1je�a2jx2j 0 < k 6 1 ð30Þ
The new filter is expressed as

H 1ðx1; x2Þ ¼ kep1x2
1
þp2jx1jþp3 ep4x2

2
þp5jx2jþp6 0 < k 6 1 ð31Þ

Because the new filter in Eq. (31) contains both the first-or-
der and second-order exponentials, its smoothness is much
better and closer to the elastic filter than the first-order
exponential filter such as the two-sided exponential in Eq.
(30). It is evident that smooth transformation is essential
in the nonlinear registration for the sake of maintaining
the continuity of the mapping and preserving the topology
of images. That is the smoother the filter, the more robust
the transform can be. Therefore, the two-sided exponential
filter may not preserve the topology of the images in some
complicated cases during nonlinear deformation due to its
poor smoothness.

5.3. Selection of viscosity coefficients k and l

In our work, k and l were set fixed, that is k = 11.5
and l = 1. From the above experiments, we find that
the values are fit for both the binary images and real
MRI images’ registration. Nevertheless, for some other
image modalities, these two values for viscosity coeffi-
cients may not be suitable any more. Here a simple
description is given to illustrate how the parameters of
the new exponential filter are affected by only altering l
for simplicity. It is assumed that the image size is
128 � 128. Table 2 shows how the parameters of the
new filter vary with l. In contrast to p3, p6, and k, p1,
p2, p4 and p5 change very slightly with l. In fact, p3, p6

and k mainly control the magnitude of the filter. The dif-
ference among them is that k determines the filter’s global
magnitude, while p3 and p6 determine the local magnitude
along the x1 and x2 directions. Compared with k, the var-
iation of p3 and p6 is much smaller than that of k. There-
fore, p3 and p6 will not have much influence on the filter’s
shape. Parameter k would actually control the global
magnitude of the displacement field instead of the field’s

Table 1
Mean and SD for the two filters.

Filter Total time (s) Iterative steps

Elastic filter 87 ± 17.4 304 ± 64
New filter 38 ± 9.6 133 ± 35
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local distribution after the convolution of the filter with a
force field. That means that the large k can result in the
fast movement of each pixel. As a result, more iterations
would be needed under the small k. However, k cannot be
increased without any limitation. When the displacement
was beyond what the forces can reach, the large deforma-
tion would destroy the topology structure and produce
worse results. Thus, it should be cautious to select k for
other sorts of image modalities. By far, no good way is
available to seek an optimal k, just like the viscosity coef-
ficients’ selection. Further work should be done to explore
how k varies with k and l in the future.

6. Conclusion

In this paper, a modified nonlinear curve fitting
method was used to approximate the elastic convolution
filter, and a new separable convolution filter with good
smoothness was produced. Two advantages in the new fil-
ter contribute to its better computation efficiency than the
elastic filter. First, the construction of the new filter is
much easier than the elastic filter because its complication
is not varied with the increase in the image size, which can
save much time to construct the filter, especially for the
image with a large size. Second, the separability of the
new filter causes the traditional convolution separable
and reduces the time cost in each iterative step. Moreover,
our experiment of real MRI data substantiated that the
new filter has faster convergence than the elastic filter
based on the elastic model even if the same convolution
algorithm was used.

It should also be noted that the current new filter does
not match the elastic filter precisely. Thus, more work is
worthy of being done to improve the property of the new
filter further. And the selection parameter k is also an issue
that needs to be investigated in more detail later.
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